# General Methods in Proof Theory for Modal Logic – Lecture 2 Limits of the Sequent Framework

Björn Lellmann and Revantha Ramanayake

TU Wien

Tutorial co-located with TABLEAUX 2017, FroCoS 2017 and ITP 2017 Brasília, Brasil, Sep 24 2017

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Outline

Case Study: S5

Sequents for S5

Hypersequents for S5

Cut Elimination

Hypersequents for S5 000000 Cut Elimination

## Reminder: Modal Logics

The formulae of modal logic are given by ( $\mathcal{V}$  is a set of variables):

$$\mathcal{F} \ ::= \ \mathcal{V} \ \big| \ \mathcal{F} \land \mathcal{F} \ \big| \ \mathcal{F} \lor \mathcal{F} \ \big| \ \mathcal{F} \to \mathcal{F} \ \big| \ \neg \mathcal{F} \ \big| \ \Box \mathcal{F}$$

with  $\Diamond A$  abbreviating the formula  $\neg \Box \neg A$ .

A Kripke frame consists of a set W of worlds and an accessibility relation  $R \subseteq W \times W$ .

A Kripke model is a Kripke frame with a valuation  $V : \mathcal{V} \to \mathcal{P}(W)$ .

Truth at a world w in a model  $\mathfrak{M}$  is defined via:

$$\mathfrak{M}, w \Vdash p \quad \text{iff} \quad w \in V(p)$$
  
$$\mathfrak{M}, w \Vdash \Box A \quad \text{iff} \quad \forall v \in W : wRv \Rightarrow \mathfrak{M}, v \Vdash A$$
  
$$\mathfrak{M}, w \Vdash \Diamond A \quad \text{iff} \quad \exists v \in W : wRv \& \mathfrak{M}, v \Vdash A$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Modal Logic S5

#### Definition

Modal logic S5 is the logic given by the class of Kripke frames with universal accessibility relation, i.e., frames (W, R) with:

 $\forall x, y \in W : xRy$ .

Thus S5-theorems are those modal formulae which are true in every world of every Kripke model with universal accessibility relation.

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

## Example

The formulae  $p \rightarrow \Box \Diamond p$ 

are theorems of S5:



Sequents for S5

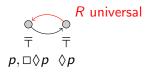
Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

## Example

The formulae  $p \rightarrow \Box \Diamond p$ 





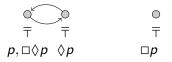
Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

#### Example

The formulae  $p \rightarrow \Box \Diamond p, \ \Box p \rightarrow p$ 



are theorems of S5:

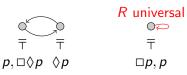
Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

#### Example

The formulae  $p \rightarrow \Box \Diamond p, \Box p \rightarrow p$ 



are theorems of S5:

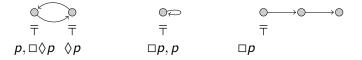
Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

#### Example

The formulae  $p \rightarrow \Box \Diamond p$ ,  $\Box p \rightarrow p$ ,  $\Box p \rightarrow \Box \Box p$  are theorems of S5:



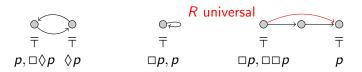
Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

#### Example

The formulae  $p \rightarrow \Box \Diamond p$ ,  $\Box p \rightarrow p$ ,  $\Box p \rightarrow \Box \Box p$  are theorems of S5:



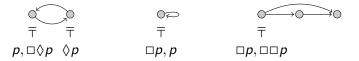
Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Modal Logic S5

#### Example

The formulae  $p \rightarrow \Box \Diamond p$ ,  $\Box p \rightarrow p$ ,  $\Box p \rightarrow \Box \Box p$  are theorems of S5:



Hilbert-style Definition: S5 is given by closing the axioms

 $\Box(p \to q) \to (\Box p \to \Box q) \qquad p \to \Box \Diamond p \qquad \Box p \to p \qquad \Box p \to \Box \Box p$ 

and propositional axioms under uniform substitution and the rules

$$\frac{A \quad A \rightarrow B}{B} \text{ modus ponens, MP} \qquad \frac{A}{\Box A} \text{ necessitation, nec}$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# A Sequent Calculus for S5

## Definition (Takano 1992)

The sequent calculus sS5 contains the standard propositional rules and

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \Box A \vdash \Delta} \mathsf{T} \qquad \frac{\Box \Gamma \vdash A, \Box \Delta}{\Box \Gamma \vdash \Box A, \Box \Delta} \mathsf{45}$$

#### Theorem

sS5 is sound and complete (with cut) for S5.

#### Proof.

Derive axioms and rules of the Hilbert-system. E.g., for  $p \rightarrow \Box \Diamond p$ :

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# A Sequent Calculus for S5

## Definition (Takano 1992)

The sequent calculus sS5 contains the standard propositional rules and

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \Box A \vdash \Delta} \mathsf{T} \qquad \frac{\Box \Gamma \vdash A, \Box \Delta}{\Box \Gamma \vdash \Box A, \Box \Delta} \mathsf{45}$$

#### Theorem

sS5 is sound and complete (with cut) for S5.

Proof.

E.g. the modus ponens rule  $\frac{A \rightarrow B}{B}$  is simulated by:

$$\underbrace{\vdash A}_{\vdash B} \xrightarrow{A \to B} \frac{A, B \vdash B \quad A \vdash A, B}{A, A \to B \vdash B} \text{ cut} \xrightarrow{A \vdash B} \text{ cut}$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## What about cut-free completeness?

Our standard proof of cut elimination fails:

$$\frac{\stackrel{\vdots}{\vdash} \neg \neg \neg A, \neg \neg A}{\stackrel{\vdash}{\vdash} \neg \neg \neg A, \neg \neg A} 45 \qquad \frac{\neg A, A \vdash}{\neg \neg A, A \vdash} \mathsf{T}_{\mathsf{cut}}$$

would need to reduce to:

$$\frac{\stackrel{\vdots}{\vdash} \neg \Box \neg A, \Box \neg A}{\underline{A \vdash} \neg \Box \neg A, A \vdash} T$$

$$\frac{A \vdash \neg \Box \neg A}{\underline{A \vdash} ??}$$
cut

But we can't apply rule 45 anymore since A is not boxed!

Sequents for S5 000000000000000 Hypersequents for S5 000000

Cut Elimination

## What about cut-free completeness?

But could there be a different derivation? No! In fact we have:

#### Theorem

The sequent  $p \vdash \Box \Diamond p$  is not cut-free derivable in sS5.

#### Proof.

The only rules that can be applied in a cut-free derivation ending in  $p \vdash \Box \Diamond p$  are weakening and contraction, possibly followed by 45. Hence, such a derivation can only contain sequents of one of the forms

$$p^{m} \vdash \Box \neg \Box \neg p^{n}$$
$$\Box \neg p^{m}, \neg p^{n} \vdash \Box \neg \Box \neg p^{k}, \neg \Box \neg p^{j}, p^{\ell}$$

with  $m, n, k, \ell, j \ge 0$  and  $A^i = \underbrace{A, \dots, A}_{i-\text{times}}$ . Thus it cannot contain an initial sequent.

 Hypersequents for S5 000000

Cut Elimination

# How to show that a logic does not have a cut-free sequent calculus?

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Is there a cut-free sequent calculus for S5?

Trivial answer: Of course! Take the rules  $\{\overline{-A} | A \text{ valid in S5}\}.$ 

Non-trivial answer: That depends on the shape of the rules!

General method for showing certain rule shapes cannot capture a semantically given modal logic even with cut:

- translate the rules into Hilbert-axioms of specific form
- connect Hilbert-style axiomatisability with frame definability
- show that the translations of the rules cannot define the frames for the logic.

(The translation involves cut, so this shows a stronger statement.)

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## What Is a Rule?

Let us call a sequent rule modal if it has the shape:

$$\frac{\Gamma_1, \Sigma_1 \vdash \Pi_1, \Delta_1 \quad \dots \quad \Gamma_n, \Sigma_n \vdash \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \vdash \Box \Pi, \Delta}$$

where (writing  $\Gamma^{\Box}$  for the restriction of  $\Gamma$  to modal formulae)

- $\Sigma_i \subseteq \Sigma, \ \Pi_i \subseteq \Pi$
- $\Gamma_i$  is one of  $\emptyset, \Gamma, \Gamma^{\Box}$
- $\Delta_i$  is one of  $\emptyset, \Delta, \Delta^{\Box}$

Example

$$\begin{array}{c} \underline{\Sigma \vdash A} \\ \overline{\Gamma, \Box \Sigma \vdash \Box A, \Delta} \hspace{0.1cm} \mathsf{K} \hspace{0.1cm} \frac{\Gamma, A \vdash \Delta}{\Gamma, \Box A \vdash \Delta} \hspace{0.1cm} \mathsf{T} \hspace{0.1cm} \frac{\Gamma^{\Box}, \Sigma \vdash A}{\Gamma, \Box \Sigma \vdash \Box A, \Delta} \hspace{0.1cm} \mathsf{4} \hspace{0.1cm} \frac{\Gamma^{\Box} \vdash A, \Delta^{\Box}}{\Gamma \vdash \Box A, \Delta} \hspace{0.1cm} \mathsf{45} \\ \text{are all modal rules (and equivalent to the rules considered earlier).} \end{array}$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## What Is a Rule?

Let us call a sequent rule modal if it has the shape:

$$\frac{\Gamma_1, \Sigma_1 \vdash \Pi_1, \Delta_1 \quad \dots \quad \Gamma_n, \Sigma_n \vdash \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \vdash \Box \Pi, \Delta}$$

where (writing  $\Gamma^{\Box}$  for the restriction of  $\Gamma$  to modal formulae)

- $\Sigma_i \subseteq \Sigma, \ \Pi_i \subseteq \Pi$
- $\Gamma_i$  is one of  $\emptyset, \Gamma, \Gamma^{\Box}$
- $\Delta_i$  is one of  $\emptyset, \Delta, \Delta^{\Box}$

Example

$$\frac{\Gamma^{\square}, \Sigma, \square A \vdash A}{\Gamma, \square \Sigma \vdash \square A, \Delta} \mathsf{ GLR}$$

is not a modal rule (because the  $\Box A$  changes sides).

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Mixed-cut-closed Rule Sets

sS5 has modal rules in this sense, so we need something more.

## Definition

A set of modal rules is **mixed-cut-closed** if principal-context cuts can be permuted up in the context.

## Example

The set with modal rule  $\frac{\Gamma^{\Box}, \Sigma \vdash A}{\Gamma \Box \Sigma \vdash \Box A, \Delta}$  4 is mixed-cut-closed: E.g.:

$$\frac{\overline{\Gamma}, \Sigma \vdash A}{\Gamma, \Box \Sigma \vdash \Box A, \Delta} 4 \qquad \frac{\Box A, \Omega^{\Box}, \Theta \vdash B}{\Box A, \Omega, \Box \Theta \vdash \Box B, \Xi} 4$$
  
$$\overline{\Gamma, \Box \Sigma, \Omega, \Box \Theta \vdash \Delta, \Box B, \Xi}$$
cut

$$\sim \qquad \frac{\overline{\Gamma^{\Box}, \Sigma \vdash A}}{\frac{\Gamma^{\Box}, \Box \Sigma \vdash \Box A, \Delta}{\Gamma, \Box \Sigma, \Sigma, \Omega^{\Box}, \Theta \vdash B}} \frac{4}{\frac{\Gamma^{\Box}, \Sigma, \Omega^{\Box}, \Theta \vdash B}{\Gamma, \Box \Sigma, \Omega, \Box \Theta \vdash \Delta, \Box B, \Xi}}$$
 cut

Hypersequents for S5 000000 Cut Elimination

## Mixed-cut-closed Rule Sets

sS5 has modal rules in this sense, so we need something more.

## Definition

A set of modal rules is **mixed-cut-closed** if principal-context cuts can be permuted up in the context.

### Example

The set sS5 is not mixed-cut-closed: the principal-context cut

$$\frac{\frac{\Gamma^{\Box} \vdash B, \Delta^{\Box}, \Box A}{\Gamma \vdash \Box B, \Delta, \Box A}}{\Gamma, \Sigma \vdash \Box B, \Delta, \Pi} 45 \qquad \frac{\frac{\Sigma, A \vdash \Pi}{\Sigma, \Box A \vdash \Pi}}{\Sigma, \Box A \vdash \Pi} \operatorname{\mathsf{T}}_{\mathsf{cut}}$$

cannot be permuted up in the context since  $\Sigma,\Pi$  are not boxed (see above).

Sequents for S5

Hypersequents for S5 000000

.

Cut Elimination

## Mixed-cut-closed Rule Sets Are Nice.

#### Lemma

If  $\mathcal{R}$  is a mixed-cut-closed rule set for S5, then the contexts in all the premisses of the modal rules have one of the forms

$$\vdash$$
 or  $\Gamma \vdash \Delta$  or  $\Gamma^{\Box} \vdash$ 

## Idea of proof.

Show that every such rule set for S5 must include a rule similar to

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \Box A \vdash \Delta} \mathsf{T}$$

Use this rule and mixed-cut-closure to replace contexts  $\Gamma^{\Box} \vdash \Delta^{\Box}$  with  $\Gamma \vdash \Delta$ .

Hypersequents for S5 000000 Cut Elimination

# Step 1: Strategy for Translating Rules to Axioms

• We consider all the representative instances of a modal rule

$$\frac{\Gamma_1, \Sigma_1 \vdash \Pi_1, \Delta_1 \quad \dots \quad \Gamma_n, \Sigma_n \vdash \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \vdash \Box \Pi, \Delta}$$

- i.e., instances of the modal rule where
  - $\Sigma, \Pi$  consists of variables only
  - $\Gamma, \Delta$  consists of variables and boxed variables only
  - every variable occurs at most once in  $\Gamma, \Delta, \Sigma, \Pi$ .
- Premisses and conclusion of these are turned into the formulae

$$prem = \bigwedge_{i=1}^{n} (\bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \to \bigvee \Pi_{i} \bigvee \Delta_{i})$$
  
$$conc = \bigwedge \Gamma \land \bigwedge \Box \Sigma \to \bigvee \Box \Pi \lor \bigvee \Delta$$

• The information of the premisses is captured in a substitution  $\sigma_{\text{prem}}$  and injected into the conclusion by taking conc  $\sigma_{\text{prem}}$ 

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Constructing The Substitution $\sigma_{\text{prem}}$

We assume that our rule set includes the Monotonicity Rule

$$\frac{A \vdash B}{\Gamma, \Box A \vdash \Box B, \Delta} \mathsf{Mon}$$

Definition (Adapted from [Ghilardi:'99])

A formula A is (S5-)projective via a substitution  $\sigma : \mathcal{V} \to \mathcal{F}$  of variables by formulae if:

1. 
$$\vdash A \sigma$$
 is derivable in GcutMon  
2. for every  $B \in \mathcal{F}$  the rule  $\frac{\vdash A}{\vdash B \leftrightarrow B\sigma}$  is derivable in GcutMon.

#### Remark

For 2 it is enough to show for every  $p \in \mathcal{V}$  derivability of the rule

$$\frac{\vdash A}{\vdash p \leftrightarrow p\sigma}.$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Constructing The Substitution $\sigma_{\text{prem}}$

#### Lemma

The formula prem =  $\bigwedge_{i=1}^{n} (\bigwedge \Gamma_i \land \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \lor \bigvee \Delta_i)$  is projective via

$$\sigma_{\text{prem}}(p) = \begin{cases} \text{prem} \land p, \ p \in \Sigma \\ \text{prem} \rightarrow p, \ p \in \Pi \\ p, \quad otherwise \end{cases}$$

#### Proof.

► To see that  $\vdash_{\text{GcutMon}} \vdash \text{prem } \sigma_{\text{prem}}$ : For every clause  $(\land \Gamma_i \land \land \Sigma_i \rightarrow \lor \Pi_i \lor \lor \Delta_i)$  of prem we have:

$$(\bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \rightarrow \bigvee \Pi_{i} \lor \bigvee \Delta_{i})\sigma_{\text{prem}}$$
  
$$\equiv \bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i}\sigma_{\text{prem}} \rightarrow \bigvee \Pi_{i}\sigma_{\text{prem}} \lor \bigvee \Delta_{i}$$
  
$$\equiv \bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \land \text{prem} \rightarrow \bigvee \Pi_{i} \lor \bigvee \Delta_{i}$$

Since  $(\wedge \Gamma_i \wedge \wedge \Sigma_i \rightarrow \vee \Pi_i \vee \vee \Delta_i)$  is a clause in prem this is derivable.

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Constructing The Substitution $\sigma_{\text{prem}}$

#### Lemma The formula prem = $\bigwedge_{i=1}^{n} (\bigwedge \Gamma_i \land \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \lor \bigvee \Delta_i)$ is projective via

$$\sigma_{\text{prem}}(p) = \begin{cases} \text{prem} \land p, \quad p \in \Sigma \\ \text{prem} \rightarrow p, \quad p \in \Pi \\ p, \qquad otherwise \end{cases}$$

## Proof. • To see that $\xrightarrow{\vdash prem}_{\vdash p \leftrightarrow p\sigma_{prem}}$ is derivable is straightforward: E.g., for $p \in \Pi$ :

$$\frac{\hline p \vdash \text{prem} \rightarrow p}{p \vdash p \text{rem} \rightarrow p \vdash p} \text{prop} \xrightarrow{p \vdash p \text{rem}, \text{prem} \rightarrow p \vdash p}_{p \text{rem} \rightarrow p \vdash p} \text{prop} \text{cut}$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

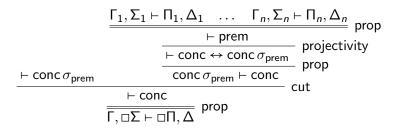
Theorem A modal rule

$$\frac{\Gamma_1, \Sigma_1 \vdash \Pi_1, \Delta_1 \dots \Gamma_n, \Sigma_n \vdash \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \vdash \Box \Pi, \Delta} R$$

is interderivable over GcutMon with the axioms conc  $\sigma_{\text{prem}}$  obtained from its representative instances.

#### Proof.

Derive the rule from the axiom using:



Sequents for S5

Hypersequents for S5 000000 Cut Elimination

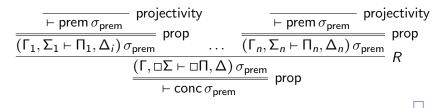
Theorem A modal rule

$$\frac{\Gamma_1, \Sigma_1 \vdash \Pi_1, \Delta_1 \dots \Gamma_n, \Sigma_n \vdash \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \vdash \Box \Pi, \Delta} R$$

is interderivable over GcutMon with the axioms conc  $\sigma_{\text{prem}}$  obtained from its representative instances.

#### Proof.

Derive the axiom from the rule by:



Hypersequents for S5 000000 Cut Elimination

Example  
The rule 
$$\frac{\Gamma^{\Box} \vdash A, \Delta^{\Box}}{\Gamma \vdash \Box A, \Delta}$$
 45 has representative instances  
 $\underline{\Box p_1, \dots, \Box p_n \vdash q, \Box r_1, \dots, \Box r_k}$ 

$$\Box p_1, \ldots, \Box p_n \vdash \Box q, \Box r_1, \ldots, \Box r_k$$

The formulae and substitution are

 $prem = \bigwedge_{i=1}^{n} \Box p_i \rightarrow q \lor \bigvee_{j=1}^{k} \Box r_j \qquad conc = \bigwedge_{i=1}^{n} \Box p_i \rightarrow \Box q \lor \bigvee_{j=1}^{k} \Box r_j$  $\sigma_{prem}(q) = prem \rightarrow q \qquad \sigma_{prem}(s) = s \text{ for } s \neq q$ E.g., for n = 1 and k = 1 the corresponding axiom is:

$$\operatorname{conc} \sigma_{\operatorname{prem}} = \Box p_1 \to \Box ((\Box p_1 \to q \lor \Box r_1) \to q) \lor \Box r_1$$

Instantiating q with  $\perp$  we have the instance

 $\Box p_1 \to \Box \big( \Box p_1 \land \neg \Box r_1 \big) \lor \Box r_1 \quad \equiv \quad \big( \Box p_1 \to \Box \Box p_1 \big) \land \big( \Diamond \Box r_1 \to \Box r_1 \big)$ 

 Hypersequents for S5 000000 Cut Elimination

## Step 2: What Do The Axioms Look Like?

An exemplary representative instance of a modal rule from a mixed-cut-closed rule set has the form

$$\frac{\sum_{1} \vdash \Pi_{1} \qquad p, \Box q, \Sigma_{2} \vdash \Pi_{2}, r \qquad \Box q, \Sigma_{3} \vdash \Pi_{3}}{p, \Box q, \Box \Sigma \vdash \Box \Pi, r}$$

The formula prem is

$$(\bigwedge \Sigma_1 \to \bigvee \Pi_1) \land (p, \Box q \land \bigwedge \Sigma_2 \to \bigvee \Pi_2 \lor r) \land (\Box q \land \bigwedge \Sigma_3 \to \bigwedge \Pi_3)$$

and the axiom is

$$A_{S5} = p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \to \bigvee_{t \in \Pi} \Box (\operatorname{prem} \to t) \lor r$$

 Hypersequents for S5 000000 Cut Elimination

## Step 3: Such axioms cannot define S5.

#### Lemma

If  $\neg A_{S5}$  is satisfiable in one of the frames  $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$  and  $\mathfrak{F}' = (\mathbb{N}, \leq)$ , then it is also satisfiable in the other.



Proof.

 $\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$ E.g., if  $\mathfrak{F}', V', 1 \Vdash \neg A$  for a valuation V', then  $\mathfrak{F}, V, 0 \Vdash \neg A$  with  $V(n) \coloneqq V'(n+1)$ 

(The only boxed formula in prem is  $\Box q!$ )

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## Step 3: Such axioms cannot define S5.

#### Lemma

If  $\neg A_{S5}$  is satisfiable in one of the frames  $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$  and  $\mathfrak{F}' = (\mathbb{N}, \leq)$ , then it is also satisfiable in the other.



Proof.

 $\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$ E.g., if  $\mathfrak{F}', V', 1 \Vdash \neg A$  for a valuation V', then  $\mathfrak{F}, V, 0 \Vdash \neg A$  with  $V(n) \coloneqq V'(n+1)$ 

(The only boxed formula in prem is  $\Box q!$ )

 Hypersequents for S5 000000 Cut Elimination

## Step 3: Such axioms cannot define S5.

#### Lemma

If  $\neg A_{S5}$  is satisfiable in one of the frames  $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$  and  $\mathfrak{F}' = (\mathbb{N}, \leq)$ , then it is also satisfiable in the other.



Proof.

 $\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$ E.g., if  $\mathfrak{F}', V', 1 \Vdash \neg A$  for a valuation V', then  $\mathfrak{F}, V, 0 \Vdash \neg A$  with V(n) := V'(n+1)

(The only boxed formula in prem is  $\Box q!$ )

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

## No Mixed-cut-closed Rule Sets for S5

#### Theorem

No sequent calculus with mixed-cut-closed propositional and modal rules is sound and complete for S5 (even with cut).

## Proof.

- The translations of such rules would have a shape like A<sub>S5</sub> above.
- ▶ By the Lemma, such axioms are valid in the S5-frame  $(\mathbb{N}, \mathbb{N} \times \mathbb{N})$  iff they are valid in  $(\mathbb{N}, \leq)$
- ▶ So all axioms (and hence: theorems) of S5 would be valid in  $(\mathbb{N}, \leq)$  but e.g.  $p \to \Box \Diamond p$  is not.

Hypersequents for S5 000000 Cut Elimination

# Other Limitative Results Using this Method

Theorem

No mixed-cut closed sequent calculus with modal rules captures:

- provability logic GL
- modal logic of symmetry KB:  $xRy \Rightarrow yRx$
- modal logic of 2-transitivity: xRy&yRz&zRw ⇒ ∃v.xRv&vRw

## Definition

- A shallow rule has no modal restriction on the context formulae.
- A one-step rule has no context formulae.

## Theorem

- No calculus with only shallow rules captures K4
- No calculus with only one-step rules captures KT

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

Can we extend the sequent framework to obtain a cut-free sequent-style calculus for logics like S5?

Sequents for S5

Hypersequents for S5 •••••• Cut Elimination

# Hypersequent Calculi

Sequents for S5 000000000000000 Hypersequents for S5 00000 Cut Elimination

# Hypersequents

## General idea

Consider several sequents in parallel, allowing for interaction!

## Definition

A hypersequent is a multiset  $\mathcal{G}$  of sequents, written as

 $\Gamma_1 \vdash \Delta_1 \mid \ldots \mid \Gamma_n \vdash \Delta_n$ .

The sequents  $\Gamma_i \vdash \Delta_i$  are called the components of  $\mathcal{G}$ .

Hypersequent calculi for S5 were independently introduced in

[Mints:'74], [Pottinger:'83], [Avron:'96]

Hypersequents were also used to provide cut-free calculi for many other logics including modal, substructural and intermediate logics.

Sequents for S5

Hypersequents for S5

Cut Elimination

# Hypersequents for S5

The (S5-)interpretation of  $\mathcal{G} = \Gamma_1 \vdash \Delta_1 \mid \ldots \mid \Gamma_n \vdash \Delta_n$  is

$$\iota(\mathcal{G}) \quad := \quad \Box(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \lor \cdots \lor \Box(\bigwedge \Gamma_n \to \bigvee \Delta_n)$$

This interpretation suggests the external structural rules

$$\frac{\mathcal{G}}{\mathcal{G} \mid \Gamma \vdash \Delta} EW \qquad \qquad \frac{\mathcal{G} \mid \Gamma \vdash \Delta \mid \Gamma \vdash \Delta}{\mathcal{G} \mid \Gamma \vdash \Delta} EC$$

Hypersequents for S5

Cut Elimination

# Hypersequent Rules for S5

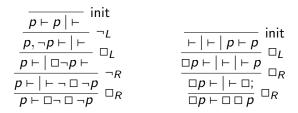
The calculus hsS5 for S5 contains the modal rules

$$\frac{\mathcal{G} \mid \Gamma \vdash \Delta \mid \vdash A}{\mathcal{G} \mid \Gamma \vdash \Delta, \Box A} \Box_{R} \quad \frac{\mathcal{G} \mid \Gamma \vdash \Delta \mid \Sigma, A \vdash \Pi}{\mathcal{G} \mid \Gamma, \Box A \vdash \Delta \mid \Sigma \vdash \Pi} \Box_{L} \quad \frac{\mathcal{G} \mid \Gamma, A \vdash \Delta}{\mathcal{G} \mid \Gamma, \Box A \vdash \Delta} \mathsf{T}$$

the standard propositional rules in every component and the external structural rules [Restall:'07].

## Example

The derivations of  $p \vdash \Box \Diamond p$  and  $\Box p \vdash \Box \Box p$  are as follows:



Sequents for S5

Hypersequents for S5 000000

Cut Elimination

# Soundness of hsS5

#### Theorem

The rules of hsS5 preserve validity under the S5-interpretation.

# Proof. E.g., for $\begin{array}{c} \mathcal{G} \mid \Gamma \vdash \Delta \mid \Sigma, A \vdash \Pi \\ \mathcal{G} \mid \Gamma, \Box A \vdash \Delta \mid \Sigma \vdash \Pi \\ \Box_L : \end{array}$ If $\mathfrak{M}, w \Vdash \neg \iota(\mathcal{G}) \land \Diamond (\land \Gamma \land \Box A \land \neg \lor \Delta) \land \Diamond (\land \Sigma \land \neg \lor \Pi) \text{ we have:} \\ \neg \iota(\mathcal{G}) \dashv \bigcirc & & & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline$

Sequents for S5

Hypersequents for S5 000000

Cut Elimination

# Soundness of hsS5

#### Theorem

The rules of hsS5 preserve validity under the S5-interpretation.

# Proof. E.g., for $\begin{array}{c} \mathcal{G} \mid \Gamma \vdash \Delta \mid \Sigma, A \vdash \Pi \\ \mathcal{G} \mid \Gamma, \Box A \vdash \Delta \mid \Sigma \vdash \Pi \\ \Box_L: \end{array}$ If $\mathfrak{M}, w \Vdash \neg \iota(\mathcal{G}) \land \Diamond (\land \Gamma \land \Box A \land \neg \lor \Delta) \land \Diamond (\land \Sigma \land \neg \lor \Pi) \text{ we have:} \\ \neg \iota(\mathcal{G}) \dashv \bigcirc & \swarrow & \downarrow & \downarrow & \downarrow \\ \hline \neg & R \text{ universal} \\ \land \Gamma, \Box A, \neg \lor \Delta$ So $\mathfrak{M}, w \Vdash \neg \iota(\mathcal{G} \mid \Gamma \vdash \Delta \mid \Sigma, A \vdash \Pi).$

Sequents for S5

Hypersequents for S5 000000

Cut Elimination

# Soundness of hsS5

#### Theorem

The rules of hsS5 preserve validity under the S5-interpretation.

#### Corollary

If  $\vdash A$  is derivable in hsS5, then A is valid in S5.

#### Proof.

By induction on the depth of the derivation, and using that the rule

 $\frac{\Box A}{A}$ 

is admissible in S5.

Sequents for S5

Hypersequents for S5

Cut Elimination

# Completeness of hsS5

We first show completeness with the hypersequent cut rule

$$\frac{\mathcal{G} \mid \Gamma \vdash \Delta, A \qquad \mathcal{H} \mid A, \Sigma \vdash \Pi}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \vdash \Delta, \Pi} \text{ hcut}$$

#### Theorem

If A is S5-valid, then  $\vdash$  A is derivable in hsS5 with hcut.

#### Proof.

Derive the axioms of S5 and simulate the rule of modus ponens by:

$$\underbrace{\stackrel{\vdots}{\vdash} A}_{\vdash A} \underbrace{\stackrel{\vdots}{\vdash} A \rightarrow B}_{\vdash B} \underbrace{\frac{\overline{B, A \vdash B} \text{ init } \overline{A \vdash A, B}}{A \rightarrow B, A \vdash B}}_{\vdash B} \operatorname{hcut}^{\operatorname{init}} \operatorname{hcut}^{}$$

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Hypersequent Cut Elimination - Complications

Cut elimination for hypersequents is complicated by the external structural rules, in particular by the rule of external contraction:

E.g. we might have the situation

$$\frac{\mathcal{G} \mid \Gamma \vdash \Delta, A}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \vdash \Delta, \Pi} \frac{\mathcal{H} \mid A, \Sigma \vdash \Pi}{\mathcal{H} \mid A, \Sigma \vdash \Pi} \text{ bcut } \mathsf{EC}$$

Permuting the cut upwards replaces it by two cuts of the same complexity:

$$\frac{\mathcal{G} \mid \Gamma \vdash \Delta, A}{\frac{\mathcal{G} \mid \Gamma \vdash \Delta, A}{\mathcal{G} \mid \mathcal{H} \mid A, \Sigma \vdash \Pi \mid A, \Sigma \vdash \Pi}} \frac{\mathcal{G} \mid \Gamma \vdash \Delta, A}{\mathcal{G} \mid \mathcal{H} \mid A, \Sigma \vdash \Pi \mid \Gamma, \Sigma \vdash \Delta, \Pi} \operatorname{hcut}}{\frac{\mathcal{G} \mid \mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \vdash \Delta, \Pi \mid \Gamma, \Sigma \vdash \Delta, \Pi}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \vdash \Delta, \Pi}} \operatorname{EC}$$

Hypersequents for S5 000000 Cut Elimination

# Cut Elimination for hsS5 - Outline

Several methods of cut elimination are possible. Here we follow one which generalises rather well [Ciabattoni:'10, L.:'14].

Strategy

- pick a top-most cut of maximal complexity
- shift up to the left until the cut formula is introduced ("Shift Left Lemma")
- shift up to the right until the cut formula is introduced ("Shift Right Lemma")
- reduce the complexity of the cut

## Key Ingredient

Absorb contractions by considering a more general induction hypothesis, similar to a one-sided mix rule.

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Cut Elimination for hsS5 - Shift Right Lemma

#### Definition

The cut rank of a derivation in hsS5hcut is the maximal complexity |A| of a cut formula A in it.

Lemma (Shift Right Lemma) If there are hsS5hcut-derivations

 $\begin{array}{c} \vdots \ \mathcal{D} \\ \mathcal{G} \mid \Gamma \vdash \Delta, A \quad \text{and} \quad \mathcal{H} \mid A^{k_1}, \Sigma_1 \vdash \Pi_1 \mid \ldots \mid A^{k_n}, \Sigma_n \vdash \Pi_n \end{array}$ 

of cut rank < |A| with A principal in the last rule of D, then there is a derivation of cut rank < |A| of

$$\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma_1 \vdash \Delta, \Pi_1 \mid \ldots \mid \Gamma, \Sigma_n \vdash \Delta, \Pi_n$$
.

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Proof (Shift Right Lemma).

By induction on the depth of the derivation  $\mathcal{E}$ , distinguishing cases according to the last rule in  $\mathcal{E}$ . Some interesting cases:

Last applied rule EC:

$$\begin{array}{c} \vdots \mathcal{D} \\ \mathcal{G} \mid \Gamma \vdash \Delta, A \end{array} \qquad \frac{\mathcal{H} \mid A^{k_1}, \Sigma_1 \vdash \Pi_1 \mid \ldots \mid A^{k_n}, \Sigma_n \vdash \Pi_n \mid A^{k_n}, \Sigma_n \vdash \Pi_n}{\mathcal{H} \mid A^{k_1}, \Sigma_1 \vdash \Pi_1 \mid \ldots \mid A^{k_n}, \Sigma_n \vdash \Pi_n} \end{array}$$

 $\sim$ 

$$\frac{\mathcal{G} \mid \Gamma \vdash \Delta, A \quad \mathcal{H} \mid A^{k_1}, \Sigma_1 \vdash \Pi_1 \mid \dots \mid A^{k_n}, \Sigma_n \vdash \Pi_n \mid A^{k_n}, \Sigma_n \vdash \Pi_n}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma_1 \vdash \Delta, \Pi_1 \mid \dots \mid \Gamma, \Sigma_n \vdash \Delta, \Pi_n \mid \Gamma, \Sigma_n \vdash \Delta, \Pi_n} IH$$

Sequents for S5

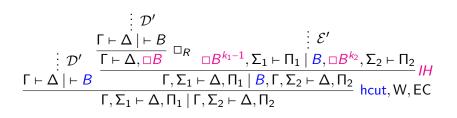
Hypersequents for S5 000000 Cut Elimination

# Proof (Shift Right Lemma).

By induction on the depth of the derivation  $\mathcal{E}$ , distinguishing cases according to the last rule in  $\mathcal{E}$ . Some interesting cases:

A = □B and last applied rule □L with □B principal (omitting side hypersequents and showing only two components):

 $\sim$ 



Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Cut Elimination for hsS5 - Shift Left Lemma

Lemma (Shift Left Lemma) If there are hsS5hcut-derivations

$$\begin{array}{c} \vdots \ \mathcal{D} \\ \mathcal{G} \mid \Gamma_1 \vdash \Delta_1, \mathcal{A}^{k_1} \mid \ldots \mid \Gamma_n \vdash \Delta_n, \mathcal{A}^{k_n} \\ \end{array} \text{ and } \begin{array}{c} \vdots \ \mathcal{E} \\ \mathcal{H} \mid \mathcal{A}, \Sigma \vdash \Pi \end{array}$$

of cut rank < |A|, then there is a derivation of cut rank < |A| of

 $\mathcal{G} \mid \mathcal{H} \mid \Gamma_1, \Sigma \vdash \Delta_1, \Pi \mid \ldots \mid \Gamma_n, \Sigma \vdash \Delta_n, \Pi$ .

Hypersequents for S5 000000 Cut Elimination

# Proof (Shift Left Lemma)

By induction on the depth of the derivation  $\mathcal{D}$ , distinguishing cases according to the last rule in  $\mathcal{D}$ . An interesting case:

A = □B and last applied rule □<sub>R</sub> with □B principal (omitting side hypersequents and assuming only two components):

 $\sim$ 

Sequents for S5

Hypersequents for S5 000000 Cut Elimination

# Cut Elimination for hsS5 - Main Theorem

#### Theorem

*Every derivation in* hsS5hcut *can be converted into a derivation in* hsS5 *with the same conclusion.* 

#### Proof.

By double induction on the cut rank r of the derivation and the number of cuts on formulae with complexity r. Topmost cuts of maximal complexity are eliminated using the Shift Left Lemma.

## Corollary (Cut-free Completeness)

If A is S5-valid, then  $\vdash$  A is derivable in hsS5.

Hypersequents for S5 000000

Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

#### Theorem

Every right-substitutive , single-conclusion right , right-contraction closed , mixed-cut permuting , principal cut closed set of hypersequent rules with context restrictions has cut elimination.

Hypersequents for S5 000000

Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

#### Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right, right-contraction closed, mixed-cut permuting, principal cut closed set of hypersequent rules with context restrictions has cut elimination.

<sup>1</sup> Cuts on context formulae permute up on the left

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed, mixed-cut permuting, principal cut closed set of hypersequent rules with context restrictions has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed<sup>3</sup>, mixed-cut permuting, principal cut closed set of hypersequent rules with context restrictions has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components
- $^3$  No formula is introduced on the right twice in a component

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed<sup>3</sup>, mixed-cut permuting<sup>4</sup>, principal cut closed set of hypersequent rules with context restrictions has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components
- $^{3}\,$  No formula is introduced on the right twice in a component
- <sup>4</sup> Principal-context cuts permute up on the right

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed<sup>3</sup>, mixed-cut permuting<sup>4</sup>, principal cut closed<sup>5</sup> set of hypersequent rules with context restrictions has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components
- $^{3}\,$  No formula is introduced on the right twice in a component
- <sup>4</sup> Principal-context cuts permute up on the right
- <sup>5</sup> Principal-principal cuts can be reduced

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed<sup>3</sup>, mixed-cut permuting<sup>4</sup>, principal cut closed<sup>5</sup> set of hypersequent rules with context restrictions<sup>6</sup> has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components
- $^{3}\,$  No formula is introduced on the right twice in a component
- <sup>4</sup> Principal-context cuts permute up on the right
- <sup>5</sup> Principal-principal cuts can be reduced
- <sup>6</sup> Suitably defined.

Hypersequents for S5 000000 Cut Elimination

# General Cut Elimination

From the proof for S5 we can extract sufficient conditions for applicability of the Shift-Left-Shift-Right method:

## Theorem

Every right-substitutive<sup>1</sup>, single-conclusion right<sup>2</sup>, right-contraction closed<sup>3</sup>, mixed-cut permuting<sup>4</sup>, principal cut closed<sup>5</sup> set of hypersequent rules with context restrictions<sup>6</sup> has cut elimination.

- <sup>1</sup> Cuts on context formulae permute up on the left
- <sup>2</sup> No formula is introduced on the right in two components
- $^{3}\,$  No formula is introduced on the right twice in a component
- <sup>4</sup> Principal-context cuts permute up on the right
- <sup>5</sup> Principal-principal cuts can be reduced
- <sup>6</sup> Suitably defined.

For the dirty details see [L.:'14].

#### Appendix

# Bibliography I



#### A. Avron.

The method of hypersequents in the proof theory of propositional non-classical logics. In *Logic: From Foundations to Applications*. Clarendon, 1996.



#### A. Ciabattoni, G. Metcalfe, and F. Montagna.

Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions. *Fuzzy sets and systems*, 161:369–389, 2010.



#### S. Ghilardi.

Unification in intuitionistic logic. J. Symb. Log., 64(2):859–880, 1999.



#### H. Kurokawa.

Hypersequent calculi for modal logics extending S4. In New Frontiers in Artificial Intelligence, volume 8417, pages 51–68. Springer, 2014.



#### B. Lellmann.

Axioms vs hypersequent rules with context restrictions: Theory and applications. In *IJCAR 2014*, pages 307–321. Springer, 2014.



#### G. Mints.

Sistemy lyuisa i sistema T (Supplement to the Russian translation). In *R. Feys, Modal Logic*, pages 422–509. Nauka, Moscow, 1974.



#### G. Pottinger.

Uniform, cut-free formulations of T, S4 and S5 (abstract). J. Symb. Logic, 48(3):900, 1983. Appendix

# Bibliography II



G. Restall.

Proofnets for S5: sequents and circuits for modal logic. In *Logic Colloquium 2005*, volume 28, pages 151–172. Cambridge, 2007.