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Reminder: Modal Logics
The formulae of modal logic are given by (V is a set of variables):

F ∶∶= V ∣ F ∧F ∣ F ∨F ∣ F → F ∣ ¬F ∣ ◻F

with ◊A abbreviating the formula ¬ ◻ ¬A.

A Kripke frame consists of a set W of worlds and an accessibility
relation R ⊆W ×W .

A Kripke model is a Kripke frame with a valuation V ∶ V → P(W ).

Truth at a world w in a model M is defined via:

M,w ⊩ p iff w ∈ V (p)
M,w ⊩ ◻A iff ∀v ∈W ∶ wRv ⇒M, v ⊩ A

M,w ⊩ ◊A iff ∃v ∈W ∶ wRv & M, v ⊩ A
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Modal Logic S5

Definition
Modal logic S5 is the logic given by the class of Kripke frames with
universal accessibility relation, i.e., frames (W ,R) with:

∀x , y ∈W ∶ xRy .

Thus S5-theorems are those modal formulae which are true in every
world of every Kripke model with universal accessibility relation.
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Modal Logic S5

Example

The formulae p → ◻◊p

, ◻p → p, ◻p → ◻◻p

are theorems of S5:

⍑
p

,◻◊p
⍑
◊p

R universal

⍑
◻p

,p

R universal

⍑
◻p

,◻◻p

R universal

⍑
p

Hilbert-style Definition: S5 is given by closing the axioms

◻(p → q)→ (◻p → ◻q) p → ◻◊p ◻ p → p ◻ p → ◻◻ p

and propositional axioms under uniform substitution and the rules

A A→ B
B

modus ponens, MP A
◻A necessitation, nec
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A Sequent Calculus for S5

Definition (Takano 1992)

The sequent calculus sS5 contains the standard propositional rules
and

Γ,A ⊢∆

Γ,◻A ⊢∆
T

◻Γ ⊢ A,◻∆

◻Γ ⊢ ◻A,◻∆
45

Theorem
sS5 is sound and complete (with cut) for S5.

Proof.
Derive axioms and rules of the Hilbert-system. E.g., for p → ◻◊p:

◻¬p ⊢ ◻¬p init

⊢ ¬ ◻ ¬p,◻¬p ¬L
⊢ ◻¬ ◻ ¬p,◻¬p 45

p ⊢ p init

¬p,p ⊢ ¬L
◻¬p,p ⊢ T

p ⊢ ◻¬ ◻ ¬p cut

⊢ p → ◻◊p →R
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A Sequent Calculus for S5

Definition (Takano 1992)

The sequent calculus sS5 contains the standard propositional rules
and

Γ,A ⊢∆

Γ,◻A ⊢∆
T

◻Γ ⊢ A,◻∆

◻Γ ⊢ ◻A,◻∆
45

Theorem
sS5 is sound and complete (with cut) for S5.

Proof.
E.g. the modus ponens rule A A→ B

B
is simulated by:

⊢ A

⊢ A→ B

A,B ⊢ B A ⊢ A,B

A,A→ B ⊢ B
→L

A ⊢ B
cut

⊢ B
cut
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What about cut-free completeness?

Our standard proof of cut elimination fails:

....
⊢ ¬◻¬A,◻¬A
⊢ ◻¬ ◻ ¬A,◻¬A 45

....
¬A,A ⊢
◻¬A,A ⊢ T

A ⊢ ◻¬ ◻ ¬A cut

would need to reduce to:

....
⊢ ¬ ◻ ¬A,◻¬A

....
¬A,A ⊢
◻¬A,A ⊢ T

A ⊢ ¬ ◻ ¬A cut
??

But we can’t apply rule 45 anymore since A is not boxed!
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What about cut-free completeness?
But could there be a different derivation?
No! In fact we have:

Theorem
The sequent p ⊢ ◻◊p is not cut-free derivable in sS5.

Proof.
The only rules that can be applied in a cut-free derivation ending
in p ⊢ ◻◊p are weakening and contraction, possibly followed by 45.
Hence, such a derivation can only contain sequents of one of the
forms

p m ⊢ ◻¬ ◻ ¬p n

◻¬p m,¬p n ⊢ ◻¬ ◻ ¬p k ,¬ ◻ ¬p j ,p `

with m,n, k , `, j ≥ 0 and Ai = A, . . . ,A
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i-times

. Thus it cannot contain an

initial sequent.
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How to show that a logic does not have a cut-free
sequent calculus?
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Is there a cut-free sequent calculus for S5?

Trivial answer: Of course!
Take the rules { ⊢ A ∣ A valid in S5}.

Non-trivial answer: That depends on the shape of the rules!

General method for showing certain rule shapes cannot capture a
semantically given modal logic even with cut:

▸ translate the rules into Hilbert-axioms of specific form

▸ connect Hilbert-style axiomatisability with frame definability

▸ show that the translations of the rules cannot define the
frames for the logic.

(The translation involves cut, so this shows a stronger statement.)
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What Is a Rule?

Let us call a sequent rule modal if it has the shape:

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

Γ,◻Σ ⊢ ◻Π,∆

where (writing Γ◻ for the restriction of Γ to modal formulae)

▸ Σi ⊆ Σ, Πi ⊆ Π

▸ Γi is one of ∅,Γ,Γ◻
▸ ∆i is one of ∅,∆,∆◻

Example

Σ ⊢ A
Γ,◻Σ ⊢ ◻A,∆ K

Γ,A ⊢∆

Γ,◻A ⊢∆
T

Γ◻,Σ ⊢ A

Γ,◻Σ ⊢ ◻A,∆ 4
Γ◻ ⊢ A,∆◻

Γ ⊢ ◻A,∆ 45

are all modal rules (and equivalent to the rules considered earlier).



Modal Logic S5 Sequents for S5 Hypersequents for S5 Cut Elimination

What Is a Rule?

Let us call a sequent rule modal if it has the shape:

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

Γ,◻Σ ⊢ ◻Π,∆
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Example
Γ◻,Σ,◻A ⊢ A

Γ,◻Σ ⊢ ◻A,∆ GLR

is not a modal rule (because the ◻A changes sides).
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Mixed-cut-closed Rule Sets
sS5 has modal rules in this sense, so we need something more.

Definition
A set of modal rules is mixed-cut-closed if principal-context cuts
can be permuted up in the context.

Example

The set with modal rule
Γ◻,Σ ⊢ A

Γ ◻Σ ⊢ ◻A,∆ 4 is mixed-cut-closed: E.g.:

Γ◻,Σ ⊢ A

Γ,◻Σ ⊢ ◻A,∆ 4
◻A,Ω◻,Θ ⊢ B

◻A,Ω,◻Θ ⊢ ◻B,Ξ 4

Γ,◻Σ,Ω,◻Θ ⊢∆,◻B,Ξ cut

↝

Γ◻,Σ ⊢ A

Γ◻,◻Σ ⊢ ◻A,∆ 4 ◻A,Ω◻,Θ ⊢ B

Γ◻,Σ,Ω◻,Θ ⊢ B
cut

Γ,◻Σ,Ω,◻Θ ⊢∆,◻B,Ξ 4
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Mixed-cut-closed Rule Sets
sS5 has modal rules in this sense, so we need something more.

Definition
A set of modal rules is mixed-cut-closed if principal-context cuts
can be permuted up in the context.

Example

The set sS5 is not mixed-cut-closed: the principal-context cut

Γ◻ ⊢ B,∆◻,◻A
Γ ⊢ ◻B,∆,◻A 45

Σ,A ⊢ Π

Σ,◻A ⊢ Π
T

Γ,Σ ⊢ ◻B,∆,Π cut

cannot be permuted up in the context since Σ,Π are not boxed
(see above).
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Mixed-cut-closed Rule Sets Are Nice.

Lemma
If R is a mixed-cut-closed rule set for S5, then the contexts in all
the premisses of the modal rules have one of the forms

⊢ or Γ ⊢∆ or Γ◻ ⊢ .

Idea of proof.

Show that every such rule set for S5 must include a rule similar to

Γ,A ⊢∆

Γ,◻A ⊢∆
T

Use this rule and mixed-cut-closure to replace contexts Γ◻ ⊢∆◻

with Γ ⊢∆.
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Step 1: Strategy for Translating Rules to Axioms

▸ We consider all the representative instances of a modal rule

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

Γ,◻Σ ⊢ ◻Π,∆

i.e., instances of the modal rule where
▸ Σ,Π consists of variables only
▸ Γ,∆ consists of variables and boxed variables only
▸ every variable occurs at most once in Γ,∆,Σ,Π.

▸ Premisses and conclusion of these are turned into the formulae

prem =⋀n
i=1(⋀Γi ∧⋀Σi →⋁Πi⋁∆i)

conc =⋀Γ ∧⋀◻Σ→⋁◻Π ∨⋁∆

▸ The information of the premisses is captured in a substitution
σprem and injected into the conclusion by taking concσprem
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Constructing The Substitution σprem

We assume that our rule set includes the Monotonicity Rule

A ⊢ B
Γ,◻A ⊢ ◻B,∆ Mon

Definition (Adapted from [Ghilardi:’99])

A formula A is (S5-)projective via a substitution σ ∶ V → F of
variables by formulae if:

1. ⊢ A σ is derivable in GcutMon

2. for every B ∈ F the rule ⊢ A
⊢ B ↔ Bσ

is derivable in GcutMon.

Remark
For 2 it is enough to show for every p ∈ V derivability of the rule

⊢ A
⊢ p↔ pσ .
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Constructing The Substitution σprem

Lemma
The formula prem = ⋀n

i=1(⋀Γi ∧⋀Σi → ⋁Πi ∨⋁∆i) is projective
via

σprem(p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

prem ∧ p, p ∈ Σ
prem→ p, p ∈ Π
p, otherwise

Proof.
▸ To see that ⊢GcutMon ⊢ premσprem:
For every clause (⋀Γi ∧⋀Σi → ⋁Πi ∨⋁∆i) of prem we have:

(⋀Γi ∧⋀Σi →⋁Πi ∨⋁∆i)σprem

≡⋀Γi ∧⋀Σiσprem →⋁Πiσprem ∨⋁∆i

≡⋀Γi ∧⋀Σi ∧ prem→⋁Πi ∨⋁∆i

Since (⋀Γi∧⋀Σi → ⋁Πi∨⋁∆i) is a clause in prem this is derivable.
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Constructing The Substitution σprem

Lemma
The formula prem = ⋀n

i=1(⋀Γi ∧⋀Σi → ⋁Πi ∨⋁∆i) is projective
via

σprem(p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

prem ∧ p, p ∈ Σ
prem→ p, p ∈ Π
p, otherwise

Proof.
▸ To see that

⊢ prem
⊢ p↔ pσprem

is derivable is straightforward:

E.g., for p ∈ Π:

p ⊢ prem→ p
prop

⊢ prem prem,prem→ p ⊢ p
prop

prem→ p ⊢ p
cut

⊢ pσprem ↔ p
prop
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Theorem
A modal rule

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

Γ,◻Σ ⊢ ◻Π,∆
R

is interderivable over GcutMon with the axioms concσprem

obtained from its representative instances.

Proof.
Derive the rule from the axiom using:

⊢ concσprem

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

⊢ prem
prop

⊢ conc↔ concσprem
projectivity

concσprem ⊢ conc
prop

⊢ conc
cut

Γ,◻Σ ⊢ ◻Π,∆
prop
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Theorem
A modal rule

Γ1,Σ1 ⊢ Π1,∆1 . . . Γn,Σn ⊢ Πn,∆n

Γ,◻Σ ⊢ ◻Π,∆
R

is interderivable over GcutMon with the axioms concσprem

obtained from its representative instances.

Proof.
Derive the axiom from the rule by:

⊢ premσprem
projectivity

(Γ1,Σ1 ⊢ Π1,∆i)σprem

prop
. . .

⊢ premσprem
projectivity

(Γn,Σn ⊢ Πn,∆n)σprem

prop

(Γ,◻Σ ⊢ ◻Π,∆)σprem
R

⊢ concσprem
prop
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Example

The rule
Γ◻ ⊢ A,∆◻

Γ ⊢ ◻A,∆ 45 has representative instances

◻p1, . . . ,◻pn ⊢ q,◻r1, . . . ,◻rk
◻p1, . . . ,◻pn ⊢ ◻q,◻r1, . . . ,◻rk

The formulae and substitution are

prem =⋀n
i=1 ◻pi → q∨⋁k

j=1 ◻rj conc =⋀n
i=1 ◻pi → ◻q∨⋁k

j=1 ◻rj

σprem(q) = prem→ q σprem(s) = s for s ≠ q

E.g., for n = 1 and k = 1 the corresponding axiom is:

concσprem = ◻p1 → ◻((◻p1 → q ∨ ◻r1)→ q) ∨ ◻r1

Instantiating q with � we have the instance

◻p1 → ◻(◻p1 ∧¬◻ r1)∨◻r1 ≡ (◻p1 → ◻◻ p1)∧ (◊◻ r1 → ◻r1)
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Step 2: What Do The Axioms Look Like?

An exemplary representative instance of a modal rule from a
mixed-cut-closed rule set has the form

Σ1 ⊢ Π1 p,◻q,Σ2 ⊢ Π2, r ◻q,Σ3 ⊢ Π3

p,◻q,◻Σ ⊢ ◻Π, r

The formula prem is

(⋀Σ1 →⋁Π1)∧(p,◻q∧⋀Σ2 →⋁Π2∨r)∧(◻q∧⋀Σ3 →⋀Π3)

and the axiom is

AS5 = p ∧ ◻q ∧⋀s∈Σ ◻(prem ∧ s)→⋁t∈Π ◻(prem→ t) ∨ r
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Step 3: Such axioms cannot define S5.

Lemma
If ¬AS5 is satisfiable in one of the frames F = (N,N ×N) and
F′ = (N,≤), then it is also satisfiable in the other.

0

¬AS5

⍊

1 2
. . .

0′ 1′

¬AS5

⍊

2′
. . .

Proof.

¬AS5 ≡ p ∧ ◻q ∧⋀s∈Σ ◻(prem ∧ s) ∧⋀t∈Π ◊(prem ∧ ¬t) ∧ ¬t
E.g., if F′,V ′,1 ⊩ ¬A for a valuation V ′, then F,V ,0 ⊩ ¬A with

V (n) ∶= V ′(n + 1)

(The only boxed formula in prem is ◻q!)
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No Mixed-cut-closed Rule Sets for S5

Theorem
No sequent calculus with mixed-cut-closed propositional and modal
rules is sound and complete for S5 (even with cut).

Proof.

▸ The translations of such rules would have a shape like AS5

above.

▸ By the Lemma, such axioms are valid in the S5-frame
(N,N ×N) iff they are valid in (N,≤)

▸ So all axioms (and hence: theorems) of S5 would be valid in
(N,≤) – but e.g. p → ◻◊p is not.
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Other Limitative Results Using this Method

Theorem
No mixed-cut closed sequent calculus with modal rules captures:

▸ provability logic GL

▸ modal logic of symmetry KB: xRy ⇒ yRx

▸ modal logic of 2-transitivity: xRy&yRz&zRw ⇒ ∃v .xRv&vRw

Definition

▸ A shallow rule has no modal restriction on the context
formulae.

▸ A one-step rule has no context formulae.

Theorem

▸ No calculus with only shallow rules captures K4

▸ No calculus with only one-step rules captures KT
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Can we extend the sequent framework to obtain a cut-free
sequent-style calculus for logics like S5?
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Hypersequent Calculi
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Hypersequents

General idea
Consider several sequents in parallel, allowing for interaction!

Definition
A hypersequent is a multiset G of sequents, written as

Γ1 ⊢∆1 ∣ . . . ∣ Γn ⊢∆n .

The sequents Γi ⊢∆i are called the components of G.

Hypersequent calculi for S5 were independently introduced in

[Mints:’74], [Pottinger:’83], [Avron:’96]

Hypersequents were also used to provide cut-free calculi for many
other logics including modal, substructural and intermediate logics.
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Hypersequents for S5

The (S5-)interpretation of G = Γ1 ⊢∆1 ∣ . . . ∣ Γn ⊢∆n is

ι(G) ∶= ◻(⋀Γ1 →⋁∆1) ∨ ⋅ ⋅ ⋅ ∨ ◻(⋀Γn →⋁∆n)

This interpretation suggests the external structural rules

G
G ∣ Γ ⊢∆

EW
G ∣ Γ ⊢∆ ∣ Γ ⊢∆

G ∣ Γ ⊢∆
EC
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Hypersequent Rules for S5
The calculus hsS5 for S5 contains the modal rules

G ∣ Γ ⊢∆ ∣ ⊢ A

G ∣ Γ ⊢∆,◻A
◻R

G ∣ Γ ⊢∆ ∣ Σ,A ⊢ Π

G ∣ Γ,◻A ⊢∆ ∣ Σ ⊢ Π
◻L

G ∣ Γ,A ⊢∆

G ∣ Γ,◻A ⊢∆
T

the standard propositional rules in every component and the
external structural rules [Restall:’07].

Example

The derivations of p ⊢ ◻◊p and ◻p ⊢ ◻ ◻ p are as follows:

p ⊢ p ∣ ⊢ init

p,¬p ⊢ ∣ ⊢
¬L

p ⊢ ∣ ◻¬p ⊢
◻L

p ⊢ ∣ ⊢ ¬ ◻ ¬p
¬R

p ⊢ ◻¬ ◻ ¬p ◻R

⊢ ∣ ⊢ ∣ p ⊢ p
init

◻p ⊢ ∣ ⊢ ∣ ⊢ p
◻L

◻p ⊢ ∣ ⊢ ◻;
◻R

◻p ⊢ ◻ ◻ p
◻R
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Soundness of hsS5

Theorem
The rules of hsS5 preserve validity under the S5-interpretation.

Proof.

E.g., for
G ∣ Γ ⊢∆ ∣ Σ,A ⊢ Π

G ∣ Γ,◻A ⊢∆ ∣ Σ ⊢ Π
◻L :

If M,w ⊩ ¬ι(G) ∧ ◊(⋀Γ ∧ ◻A ∧ ¬⋁∆) ∧ ◊(⋀Σ ∧ ¬⋁Π) we have:

w
¬ι(G) ê

x

⍑
⋀Γ,◻A,¬⋁∆

y
⊩ ⋀Σ,

A,

¬⋁Π

R universal

So M,w ⊩ ¬ι(G ∣ Γ ⊢∆ ∣ Σ,A ⊢ Π).
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Soundness of hsS5

Theorem
The rules of hsS5 preserve validity under the S5-interpretation.

Corollary

If ⊢ A is derivable in hsS5, then A is valid in S5.

Proof.
By induction on the depth of the derivation, and using that the rule

◻A
A

is admissible in S5.
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Completeness of hsS5

We first show completeness with the hypersequent cut rule

G ∣ Γ ⊢∆,A H ∣ A,Σ ⊢ Π

G ∣H ∣ Γ,Σ ⊢∆,Π
hcut

Theorem
If A is S5-valid, then ⊢ A is derivable in hsS5 with hcut.

Proof.
Derive the axioms of S5 and simulate the rule of modus ponens by:

....
⊢ A

....
⊢ A→ B

B,A ⊢ B
init

A ⊢ A,B
init

A→ B,A ⊢ B
→L

⊢ A→ B
hcut

⊢ B
hcut
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Hypersequent Cut Elimination - Complications

Cut elimination for hypersequents is complicated by the external
structural rules, in particular by the rule of external contraction:

E.g. we might have the situation

G ∣ Γ ⊢∆,A

H ∣ A,Σ ⊢ Π ∣ A,Σ ⊢ Π

H ∣ A,Σ ⊢ Π
EC

G ∣H ∣ Γ,Σ ⊢∆,Π
hcut

Permuting the cut upwards replaces it by two cuts of the same
complexity:

G ∣ Γ ⊢∆,A

G ∣ Γ ⊢∆,A H ∣ A,Σ ⊢ Π ∣ A,Σ ⊢ Π

G ∣H ∣ A,Σ ⊢ Π ∣ Γ,Σ ⊢∆,Π
hcut

G ∣ G ∣H ∣ Γ,Σ ⊢∆,Π ∣ Γ,Σ ⊢∆,Π
hcut

G ∣H ∣ Γ,Σ ⊢∆,Π
EC
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Cut Elimination for hsS5 - Outline
Several methods of cut elimination are possible.
Here we follow one which generalises rather well
[Ciabattoni:’10, L.:’14].

Strategy

▸ pick a top-most cut of maximal complexity

▸ shift up to the left until the cut formula is introduced
(“Shift Left Lemma”)

▸ shift up to the right until the cut formula is introduced
(“Shift Right Lemma”)

▸ reduce the complexity of the cut

Key Ingredient

Absorb contractions by considering a more general induction
hypothesis, similar to a one-sided mix rule.
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Cut Elimination for hsS5 - Shift Right Lemma

Definition
The cut rank of a derivation in hsS5hcut is the maximal complexity
∣A∣ of a cut formula A in it.

Lemma (Shift Right Lemma)

If there are hsS5hcut-derivations

.... D
G ∣ Γ ⊢∆,A and

.... E
H ∣ Ak1 ,Σ1 ⊢ Π1 ∣ . . . ∣ Akn ,Σn ⊢ Πn

of cut rank < ∣A∣ with A principal in the last rule of D, then there
is a derivation of cut rank < ∣A∣ of

G ∣H ∣ Γ,Σ1 ⊢∆,Π1 ∣ . . . ∣ Γ,Σn ⊢∆,Πn .
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Proof (Shift Right Lemma).

By induction on the depth of the derivation E , distinguishing cases
according to the last rule in E . Some interesting cases:

▸ Last applied rule EC:

.... D
G ∣ Γ ⊢∆,A

.... E
′

H ∣ Ak1 ,Σ1 ⊢ Π1 ∣ . . . ∣ Akn ,Σn ⊢ Πn ∣ Akn ,Σn ⊢ Πn

H ∣ Ak1 ,Σ1 ⊢ Π1 ∣ . . . ∣ Akn ,Σn ⊢ Πn

↝
.... D

G ∣ Γ ⊢∆,A

.... E
′

H ∣ Ak1 ,Σ1 ⊢ Π1 ∣ . . . ∣ Akn ,Σn ⊢ Πn ∣ Akn ,Σn ⊢ Πn

G ∣H ∣ Γ,Σ1 ⊢∆,Π1 ∣ . . . ∣ Γ,Σn ⊢∆,Πn ∣ Γ,Σn ⊢∆,Πn
IH

G ∣H ∣ Γ,Σ1 ⊢∆,Π1 ∣ . . . ∣ Γ,Σn ⊢∆,Πn
EC
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Proof (Shift Right Lemma).

By induction on the depth of the derivation E , distinguishing cases
according to the last rule in E . Some interesting cases:

▸ A = ◻B and last applied rule ◻L with ◻B principal (omitting
side hypersequents and showing only two components):

.... D
′

Γ ⊢∆ ∣ ⊢ B

Γ ⊢∆,◻B ◻R

.... E
′

◻Bk1−1,Σ1 ⊢ Π1 ∣ B,◻Bk2 ,Σ2 ⊢ Π2

◻Bk1 ,Σ1 ⊢ Π1 ∣ ◻Bk2 ,Σ2 ⊢ Π2

◻L

↝

.... D
′

Γ ⊢∆ ∣ ⊢ B

.... D
′

Γ ⊢∆ ∣ ⊢ B

Γ ⊢∆,◻B ◻R

.... E
′

◻Bk1−1,Σ1 ⊢ Π1 ∣ B,◻Bk2 ,Σ2 ⊢ Π2

Γ,Σ1 ⊢∆,Π1 ∣ B,Γ,Σ2 ⊢∆,Π2
IH

Γ,Σ1 ⊢∆,Π1 ∣ Γ,Σ2 ⊢∆,Π2
hcut,W,EC
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Cut Elimination for hsS5 - Shift Left Lemma

Lemma (Shift Left Lemma)

If there are hsS5hcut-derivations

.... D
G ∣ Γ1 ⊢∆1,A

k1 ∣ . . . ∣ Γn ⊢∆n,A
kn and

.... E
H ∣ A,Σ ⊢ Π

of cut rank < ∣A∣, then there is a derivation of cut rank < ∣A∣ of

G ∣H ∣ Γ1,Σ ⊢∆1,Π ∣ . . . ∣ Γn,Σ ⊢∆n,Π .
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Proof (Shift Left Lemma)

By induction on the depth of the derivation D, distinguishing cases
according to the last rule in D. An interesting case:

▸ A = ◻B and last applied rule ◻R with ◻B principal (omitting
side hypersequents and assuming only two components):

.... D
′

Γ1 ⊢∆1,◻Bk1 ∣ Γ2 ⊢∆2,◻Bk2−1 ∣ ⊢ B

Γ1 ⊢∆1,◻Bk1 ∣ Γ2 ⊢∆2,◻Bk2
◻R

.... E
◻B,Σ ⊢ Π

↝
.... D

′

Γ1 ⊢∆1,◻Bk1 ∣ Γ2 ⊢∆2,◻Bk2−1 ∣ ⊢ B

.... E
◻B,Σ ⊢ Π

Γ1,Σ ⊢∆1,Π ∣ Γ2,Σ ⊢∆2,Π ∣ ⊢ B
IH

Γ1,Σ ⊢∆1,Π ∣ Γ2,Σ ⊢∆2,Π,◻B
◻R

.... E
◻B,Σ ⊢ Π

Γ1,Σ ⊢∆1,Π ∣ Γ2,Σ ⊢∆2,Π
SRL
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Cut Elimination for hsS5 - Main Theorem

Theorem
Every derivation in hsS5hcut can be converted into a derivation in
hsS5 with the same conclusion.

Proof.
By double induction on the cut rank r of the derivation and the
number of cuts on formulae with complexity r . Topmost cuts of
maximal complexity are eliminated using the Shift Left Lemma.

Corollary (Cut-free Completeness)

If A is S5-valid, then ⊢ A is derivable in hsS5.
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General Cut Elimination

From the proof for S5 we can extract sufficient conditions for
applicability of the Shift-Left-Shift-Right method:

Theorem
Every right-substitutive

1

, single-conclusion right

2

, right-contraction
closed

3

, mixed-cut permuting

4

, principal cut closed

5

set of
hypersequent rules with context restrictions

6

has cut elimination.

1 Cuts on context formulae permute up on the left
2 No formula is introduced on the right in two components
3 No formula is introduced on the right twice in a component
4 Principal-context cuts permute up on the right
5 Principal-principal cuts can be reduced
6 Suitably defined.

For the dirty details see [L.:’14].
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